Search results for " Emission"

showing 10 items of 1496 documents

Outstanding nonlinear optical properties of methylammonium- and Cs-PbX3 (X = Br, I, and Br–I) perovskites: Polycrystalline thin films and nanoparticl…

2019

Metal Halide Perovskites (MHPs) have arisen as promising materials to construct cost-effective photovoltaic and light emission devices. The study of nonlinear optical properties of MHPs is necessary to get similar success in nonlinear photonic devices, which is practically absent in the literature. The determination of the third order nonlinear coefficients is typically done by the Z-scan technique, which is limited by the scattering of polycrystalline thin films. In this work, we have studied nonlinear optical properties of polycrystalline CH3NH3PbX3 (MAPbX3) thin films and colloidal CsPbX3 nanoparticles with three different bandgaps (X3 = I3, Br3, and Br1.5I1.5). Their bright generation o…

010302 applied physicsMaterials sciencePhotoluminescenceInfraredbusiness.industryScatteringBand gaplcsh:BiotechnologyGeneral Engineering02 engineering and technology021001 nanoscience & nanotechnology01 natural sciences7. Clean energylcsh:QC1-999lcsh:TP248.13-248.650103 physical sciencesOptoelectronicsGeneral Materials ScienceLight emissionPhotonicsThin film0210 nano-technologybusinessAbsorption (electromagnetic radiation)lcsh:PhysicsAPL Materials
researchProduct

Spectroscopic study of ion temperature in minimum-B ECRIS plasma

2019

Experimentally determined ion temperatures of different charge states and elements in minimum-B confined electron cyclotron resonance ion source (ECRIS) plasma are reported. It is demonstrated with optical emission spectroscopy, complemented by the energy spread measurements of the extracted ion beams, that the ion temperature in the JYFL 14 GHz ECRIS is 5–28 eV depending on the plasma species and charge state. The reported ion temperatures are an order of magnitude higher than previously deduced from indirect diagnostics and used in simulations, but agree with those reported for a quadrupole mirror fusion experiment. The diagnostics setup and data interpretation are discussed in detail to …

010302 applied physicsMaterials scienceionitPlasma spectroscopyspektroskopiaAnalytical chemistryIon temperaturePlasmaCondensed Matter Physics7. Clean energy01 natural sciences010305 fluids & plasmasPhysics::Plasma Physicsion temperature0103 physical scienceslämpötilaspectroscopic studyOptical emission spectroscopyDoppler broadeningPlasma Sources Science and Technology
researchProduct

Photoelectron Emission from Metal Surfaces Induced by Radiation Emitted by a 14 GHz Electron Cyclotron Resonance Ion Source

2015

Photoelectron emission measurements have been performed using a room-temperature 14 GHz ECR ion source. It is shown that the photoelectron emission from Al, Cu, and stainless steel (SAE 304) surfaces, which are common plasma chamber materials, is predominantly caused by radiation emitted from plasma with energies between 8 eV and 1 keV. Characteristic X-ray emission and bremsstrahlung from plasma have a negligible contribution to the photoelectron emission. It is estimated from the measured data that the maximum conceivable photoelectron flux from plasma chamber walls is on the order of 10% of the estimated total electron losses from the plasma. peerReviewed

010302 applied physicsMaterials scienceta114Physics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaCyclotron resonanceBremsstrahlungFOS: Physical sciencesPlasmaElectronphotoelectron emissionRadiation01 natural sciences7. Clean energyElectron cyclotron resonanceIon sourcePhysics - Plasma Physics010305 fluids & plasmasPlasma Physics (physics.plasm-ph)Physics::Plasma Physics0103 physical scienceselectron cyclotron resonance ion sourcesPlasma diagnosticsAtomic physicsInstrumentation
researchProduct

Study of the Secondary Electron Yield in Dielectrics Using Equivalent Circuital Models

2018

[EN] Secondary electron emission has an important role on the triggering of the multipactor effect; therefore, its study and characterization are essential in radio-frequency waveguide applications. In this paper, we propose a theoretical model, based on equivalent circuit models, to properly understand charging and discharging processes that occur in dielectric samples under electron irradiation for secondary electron emission characterization. Experimental results obtained for Pt, Si, GaS, and Teflon samples are presented to verify the accuracy of the proposed model. Good agreement between theory and experiments has been found.

010302 applied physicsMultipactor effectNuclear and High Energy PhysicsWaveguide (electromagnetism)Materials scienceDielectricCondensed Matter Physics01 natural sciencesSecondary electrons010305 fluids & plasmasCharacterization (materials science)Computational physicsSecondary electron emission (SEE)Secondary emission0103 physical sciencesRadio frequencyTEORIA DE LA SEÑAL Y COMUNICACIONESElectron beam processingEquivalent circuitMultipactor effectSecondary electron yield
researchProduct

The ${JV}$ -Characteristic of Intermediate Band Solar Cells With Overlapping Absorption Coefficients

2017

An analytic expression for the $\textit {JV}$ -characteristic of intermediate band (IB) solar cells with overlapping absorption coefficients is derived. The characteristic contains six voltage-independent parameters that are calculated from material properties, cell properties, and external conditions. Combined with exponential functions containing the cell voltage, these describe the full $\textit {JV}$ -characteristic. Expressions are also derived for the short-circuit current and open-circuit voltage. The model represents a major simplification compared with the existing model for this type of devices. The simplicity will facilitate the understanding of the operation of such cells. Furth…

010302 applied physicsPhysicsComputation02 engineering and technologyTrappingType (model theory)021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsElectronic Optical and Magnetic MaterialsExponential function0103 physical sciencesSpontaneous emissionElectrical and Electronic Engineering0210 nano-technologyAbsorption (electromagnetic radiation)Material propertiesVoltageIEEE Transactions on Electron Devices
researchProduct

Ultrasonic nebulization inductively coupled plasma optical emission spectrometry method for wine analysis

2020

Abstract A methodology was developed to determine mineral elements in wines using Inductively Coupled Plasma Optical Emission Spectrometry combined with ultrasonic nebulization. The concentration of 36 elements (Al, B, Ba, Bi, Ca, Cd, Ce, Co, Cr, Dy, Er, Eu, Fe, Gd, K, La, Lu, Mg, Mn, Mo, Na, Nd, Ni, Pb, Pr, Sb, Sc, Sm, Sr, Tb, Ti, Tm, V, Y, Yb, and Zn) was determined in 59 wine samples and used to distinguish between Brazilian and Spanish wines. The best conditions for the plasma were selected using a two-level factorial design: radiofrequency power 1500 W; plasma gas flow rate 15 L min−1; auxiliary 0.70 L min−1; and nebulizer 0.40 L min−1. An exploratory multivariate analysis by Principal…

010302 applied physicsWineRiver valleyChemistry010401 analytical chemistryAnalytical chemistryMineral composition01 natural sciencesAtomic and Molecular Physics and OpticsUltrasonic nebulization0104 chemical sciencesAnalytical ChemistryInductively coupled plasma atomic emission spectroscopy0103 physical sciencesInductively coupled plasmaOptical emission spectrometryInstrumentationSpectroscopySpectrochimica Acta Part B: Atomic Spectroscopy
researchProduct

Mechanism of activated chemiluminescence of cyclic peroxides: 1,2-dioxetanes and 1,2-dioxetanones

2017

Almost all chemiluminescent and bioluminescent reactions involve cyclic peroxides. The structure of the peroxide and reaction conditions determine the quantum efficiency of light emission. Oxidizable fluorophores, the so-called activators, react with 1,2-dioxetanones promoting the former to their first singlet excited state. This transformation is inefficient and does not occur with 1,2-dioxetanes; however, they have been used as models for the efficient firefly bioluminescence. In this work, we use the SA-CASSCF/CASPT2 method to investigate the activated chemiexcitation of the parent 1,2-dioxetane and 1,2-dioxetanone. Our findings suggest that ground state decomposition of the peroxide com…

010405 organic chemistryChemistryGeneral Physics and Astronomy010402 general chemistryPhotochemistrySupermolecule01 natural sciencesPeroxideLUCIFERIDAE0104 chemical scienceslaw.inventionchemistry.chemical_compoundlawExcited stateBioluminescenceLight emissionSinglet statePhysical and Theoretical ChemistryGround stateChemiluminescencePhysical Chemistry Chemical Physics
researchProduct

Diving below the spin-down limit: Constraints on gravitational waves from the energetic young pulsar PSR J0537-6910

2021

We present a search for continuous gravitational-wave signals from the young, energetic X-ray pulsar PSR J0537-6910 using data from the second and third observing runs of LIGO and Virgo. The search is enabled by a contemporaneous timing ephemeris obtained using NICER data. The NICER ephemeris has also been extended through 2020 October and includes three new glitches. PSR J0537-6910 has the largest spin-down luminosity of any pulsar and is highly active with regards to glitches. Analyses of its long-term and inter-glitch braking indices provided intriguing evidence that its spin-down energy budget may include gravitational-wave emission from a time-varying mass quadrupole moment. Its 62 Hz …

010504 meteorology & atmospheric sciencesAstronomyAstrophysicsEP/ T017325/101 natural sciencesrotationGeneral Relativity and Quantum CosmologyPSR J0537−6910neutron starsLuminosityGravitatational Waves PSR J0537−6910 LIGO VirgoHISTORYLIGOSupernova remnantneutron star010303 astronomy & astrophysicsgravitational waveQCQBpulsarPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/03N157BPhysics/dk/atira/pure/sustainabledevelopmentgoals/partnershipsGravitational waves neutron stars pulsarEPSRCPhysical Sciencesmoment: multipole[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical PhenomenaGravitational wavedata analysis methodPSR J0537-6910Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astronomy & AstrophysicsEphemeris1ST SEARCHGravitational wavesX-raySDG 17 - Partnerships for the GoalsPulsar0103 physical sciences/dk/atira/pure/subjectarea/asjc/1900/1912X-ray: emissiongravitational waves; pulsars; PSR J0537-6910; neutron starsSTFCAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesScience & TechnologyNeutron Star Interior Composition ExplorerR-MODEGravitational waveVirgopulsar: rotationRCUKAstronomy and AstrophysicsLIGONeutron starVIRGOSUPERNOVA REMNANTSpace and Planetary Sciencegravitational radiation: emissionpulsars/dk/atira/pure/subjectarea/asjc/3100/3103Gravitatational Waves[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Gravitational-wave Detection and Parameter Estimation for Accreting Black-hole Binaries and Their Electromagnetic Counterpart

2020

We study the impact of gas accretion on the orbital evolution of black-hole binaries initially at large separation in the band of the planned Laser Interferometer Space Antenna (LISA). We focus on two sources: (i)~stellar-origin black-hole binaries~(SOBHBs) that can migrate from the LISA band to the band of ground-based gravitational-wave observatories within weeks/months; and (ii) intermediate-mass black-hole binaries~(IMBHBs) in the LISA band only. Because of the large number of observable gravitational-wave cycles, the phase evolution of these systems needs to be modeled to great accuracy to avoid biasing the estimation of the source parameters. Accretion affects the gravitational-wave p…

010504 meteorology & atmospheric sciencesAstrophysics01 natural sciencesGeneral Relativity and Quantum Cosmology010303 astronomy & astrophysicsmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsastro-ph.HEAccretion (meteorology)Observableastro-ph.HE; astro-ph.HE; General Relativity and Quantum Cosmologygas: accretionblack holes gravitational wavesobservatoryInterferometrygravitational waves[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical Phenomenainterferometermedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysicsgravitational radiation: direct detectionelectromagnetic field: productionGeneral Relativity and Quantum Cosmologybinary: coalescencestatistical analysisSettore FIS/05 - Astronomia e Astrofisicagravitation: weak field0103 physical sciencesnumerical calculationsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesLISAGravitational wavegravitational radiationOrder (ring theory)black hole: accretionAstronomy and Astrophysicsblack holesgravitational radiation detectorRedshiftBlack holeblack hole: binarySpace and Planetary ScienceSkygravitational radiation: emission[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]X-ray: detectorThe Astrophysical Journal
researchProduct

Study of a sample of faint Be stars in the exofield of CoRoT

2013

International audience; Context. Be stars are probably the most rapid rotators among stars in the main sequence (MS) and, as such, are excellent candidates to study the incidence of the rotation on the characteristics of their non-radial pulsations, as well as on their internal structure. Pulsations are also thought to be possible mechanisms that help the mass ejection needed to build up the circumstellar disks of Be stars.Aims. The purpose of this paper is to identify a number of faint Be stars observed with the CoRoT satellite and to determine their fundamental parameters, which will enable us to study their pulsation properties as a function of the location in the HR diagram and to searc…

010504 meteorology & atmospheric sciencesBe starHertzsprung–Russell diagramK-type main-sequence starstars: emission-lineAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesSpectral lineBlue stragglersymbols.namesakestars: rotation0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]AstronomyBeAstronomy and Astrophysicsstars: early-typeHerbig Ae/Be starT Tauri starStars[SDU]Sciences of the Universe [physics]Space and Planetary Sciencesymbolsstars: fundamental parametersstars: oscillationsAstrophysics::Earth and Planetary Astrophysicsbinaries: spectroscopicAstronomy & Astrophysics
researchProduct